1,807 research outputs found

    On a counterexample to a conjecture by Blackadar

    Get PDF
    Blackadar conjectured that if we have a split short-exact sequence 0 -> I -> A -> A/I -> 0 where I is semiprojective and A/I is isomorphic to the complex numbers, then A must be semiprojective. Eilers and Katsura have found a counterexample to this conjecture. Presumably Blackadar asked that the extension be split to make it more likely that semiprojectivity of I would imply semiprojectivity of A. But oddly enough, in all the counterexamples of Eilers and Katsura the quotient map from A to A/I is split. We will show how to modify their examples to find a non-semiprojective C*-algebra B with a semiprojective ideal J such that B/J is the complex numbers and the quotient map does not split.Comment: 6 page

    The ordered K-theory of a full extension

    Get PDF
    Let A be a C*-algebra with real rank zero which has the stable weak cancellation property. Let I be an ideal of A such that I is stable and satisfies the corona factorization property. We prove that 0->I->A->A/I->0 is a full extension if and only if the extension is stenotic and K-lexicographic. As an immediate application, we extend the classification result for graph C*-algebras obtained by Tomforde and the first named author to the general non-unital case. In combination with recent results by Katsura, Tomforde, West and the first author, our result may also be used to give a purely K-theoretical description of when an essential extension of two simple and stable graph C*-algebras is again a graph C*-algebra.Comment: Version IV: No changes to the text. We only report that Theorem 4.9 is not correct as stated. See arXiv:1505.05951 for more details. Since Theorem 4.9 is an application to the main results of the paper, the main results of this paper are not affected by the error. Version III comments: Some typos and errors corrected. Some references adde

    Amplified graph C*-algebras

    Full text link
    We provide a complete invariant for graph C*-algebras which are amplified in the sense that whenever there is an edge between two vertices, there are infinitely many. The invariant used is the standard primitive ideal space adorned with a map into {−1, 0, 1, 2,...}, and we prove that the classification result is strong in the sense that isomorphisms at the level of the invariant always lift. We extend the classification result to cover more graphs, and give a range result for the invariant (in the vein of Effros–Handelman–Shen) which is further used to prove that extensions of graph C*-algebras associated to amplified graphs are again graph C*-algebras of amplified graphs
    • …
    corecore